Čas na čtení: Před samotným zahájením práce budete mít 15 minut na přečtení zadání. **Během této doby nepište ani nepočítejte, jinak budete diskvalifikováni.** Oficiální anglická verze je na vyžádání k nahlédnutí a slouží pouze k objasnění nedorozumění.
Teoretická část

„Chemie pojivem světa.“

49. Mezinárodní chemická olympiáda
Nakhon Pathom, Thajsko
Obecné informace

☐ **Strany:** Zkouškový sešit teoretické části obsahuje celkem 54 stran.

☐ **Čas na čtení:** Před samotným zahájením práce budete mít 15 minut na přečtení zadání. Během této doby **nepište ani nepočítejte, jinak budete diskvalifikováni.** Oficiální anglická verze je na vyžádání k nahlédnutí a slouží pouze k objasnění nedorozumění.

☐ **Časový limit:** Na vyřešení praktické části budete mít celkem 5 hodin.

☐ **Start/Stop:** S prací začněte bezprostředně po zaznění příkazu **Start.** Přestaňte pracovat okamžitě po zaznění příkazu **Stop.**

 • Zpoždění při ukončení práce o **1 minutu** po zaznění signálu **Stop** povede k vaší diskvalifikaci.
 • Jakmile zazní signál **Stop,** umístěte zkouškový sešit do obálky a vyčkejte na svém místě. Asistent váš zkouškový sešit vyzvedne.

☐ **Pracovní listy:** Všechny výsledky a odpovědi musí být jasně zaznamenány v pracovním listu na příslušném místě (v rámce). Budou hodnoceny pouze výsledky psané perem nebo propiskou.

 • Používejte pouze pera/propisky, které jste obdrželi.
 • Vše, co bude zapsáno mimo příslušná odpovědní místa (rámečky), nebude hodnoceno. Zadní strany zadání můžete použít jako šmírky.

☐ **Kalkulačka:** Pro všechny výpočty používejte pouze kalkulačku, kterou jste dostali.

☐ **Asistence:** Pokud potřebujete asistenci (například více jídla, nápojů nebo potřebujete odevzdat na toaletu), zamáňte oranžovou IChO vlajkou, kterou máte k dispozici na svém stole.
Obsah

<table>
<thead>
<tr>
<th>Úloha č.</th>
<th>Název</th>
<th>Strana</th>
<th>% z celkového hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Výroba propenu za použití heterogenní katalýzy</td>
<td>5</td>
<td>6 %</td>
</tr>
<tr>
<td>2</td>
<td>Kinetický izotopový efekt (KIE) a vibrační energie nulového bodu (ZPE)</td>
<td>10</td>
<td>6 %</td>
</tr>
<tr>
<td>3</td>
<td>Termodynamika chemických reakcí</td>
<td>16</td>
<td>6 %</td>
</tr>
<tr>
<td>4</td>
<td>Elektrochemie</td>
<td>20</td>
<td>5 %</td>
</tr>
<tr>
<td>5</td>
<td>Fosforečnany a křemičitany v půdě</td>
<td>25</td>
<td>5 %</td>
</tr>
<tr>
<td>6</td>
<td>Železo</td>
<td>30</td>
<td>6 %</td>
</tr>
<tr>
<td>7</td>
<td>Skládačka chemické struktury</td>
<td>35</td>
<td>6 %</td>
</tr>
<tr>
<td>8</td>
<td>Povrch siliky</td>
<td>41</td>
<td>5 %</td>
</tr>
<tr>
<td>9</td>
<td>Do ... neznáma</td>
<td>45</td>
<td>6 %</td>
</tr>
<tr>
<td>10</td>
<td>Totální syntéza alkaloidů</td>
<td>48</td>
<td>7 %</td>
</tr>
<tr>
<td>11</td>
<td>Zkroucení a chiralita</td>
<td>53</td>
<td>2 %</td>
</tr>
</tbody>
</table>
Úloha 1 | A | B | C | Celkem |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

6 % z celkového hodnocení

Úloha 1: Výroba propenu za použití heterogenní katalýzy

Propen nebo také propylen je jedním z cenných prekurzorů v petrochemii nejen v Thajsku, ale i všude ve světě. Jedním z hlavních příkladů využití propenu je výroba polypropylenu (PP).

Část A

Propen se může vyrábět přímou dehydrogenací propanu v přítomnosti heterogenního katalyzátoru. Nicméně taková reakce není vzhledem ke svému charakteru příliš ekonomická.

Odpovězte na následující otázky týkající se syntézy propenu. Potřebné údaje:

\[
\Delta H_{\text{bond}}(\text{C} = \text{C}) = 1,77 \cdot \Delta H_{\text{bond}}(\text{C} = \text{C})
\]

\[
\Delta H_{\text{bond}}(\text{H} = \text{H}) = 1,05 \cdot \Delta H_{\text{bond}}(\text{C} = \text{H})
\]

\[
\Delta H_{\text{bond}}(\text{C} = \text{H}) = 1,19 \cdot \Delta H_{\text{bond}}(\text{C} = \text{C})
\]

(\(\Delta H_{\text{bond}}\) označuje průměrnou vazebnou enthalpii dané vazby.)

1-A1

Určete, jaká změna enthalpie odpovídá přímé dehydrogenaci propanu. Zapište postup výpočtu a výsledek vyjadřete v násobcích \(\Delta H_{\text{bond}}(\text{C} = \text{C})\).

Výpočet:
1-A2

- Boyleův zákon
- Charlesův zákon
- Daltonův zákon
- Raoultův zákon
- Le Chateliérův princip

1-A3

<table>
<thead>
<tr>
<th>ΔH</th>
<th>ΔS</th>
<th>ΔG</th>
<th>T*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>nížší</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>vyšší</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>nížší</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>vyšší</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>nížší</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>vyšší</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>nížší</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>vyšší</td>
</tr>
</tbody>
</table>

* Žádná z odpovědí není správná.

Vzhledem k původní teplotě a při stejných parciálních tlacích, jako jsou v původní rovnovážné směsi.
Část B

Vhodnější variantou výroby propenu je oxační dehydrogenace (ODH) za použití pevného katalyzátoru, nejčastěji oxidů vanadu, a plyněného kyslíku. Tato reakce je síce stále ve stadiu výzkumu, nicméně nabízí slihobou variantu pro průmyslovou produkcí velkých množství propenu ve srovnání s prostou dehydrogenací propanu.

1-B

Celková rychlost úbytku propanu v této reakci je dána jako:

\[r_{C_3H_8} = \frac{1}{k_{red} p^0 + \frac{p^0}{k_{ox} P_{O_2}}} \]

kde \(k_{red} \) a \(k_{ox} \) jsou rychlostní konstanty redukce oxidu kovu propanem, resp. reoxidace kovového katalyzátoru vzdušným kyslíkem. Standardní tlak je \(p^0 = 1 \) bar. Experimenty ukazují, že rychlost reoxidace katalyzátoru je 100 000× vyšší než oxidace propanu. Experimentálně zjištěná rychlostní rovnice pro úbytek propanu při 600 K zní:

\[r_{C_3H_8} = k_{obs} \frac{p_{C_3H_8}}{p^0} \]

kde \(k_{obs} \) je pozorovaná rychlostní konstanta (0,062 mol s\(^{-1}\)). Předpokládejte, že reaktor obsahuje katalyzátor, přes který je proháněn propan s kyslíkem při celkovém tlaku 1 bar. Určete hodnoty \(k_{red} \) a \(k_{ox} \), pokud víte, že parciální tlak propanu je 0,10 bar. Parciální tlak propenu můžete zanedbat.

Výpočet
Část C

Katalyzátor na bázi oxidu kovu obsahuje na svém povrchu atomy kyslíku, které slouží jako aktivní místa pro ODH. Označme nyní:

red* aktivní místo v redukované formě
O(s) atom kyslíku na povrchu katalyzátoru

Jeden z navržených mechanismů ODH v přítomnosti katalyzátoru můžeme zapsat následovně:

\[\text{C}_3\text{H}_8(g) + \text{O}(s) \xrightarrow{k_1} \text{C}_3\text{H}_6(g) + \text{H}_2\text{O}(g) + \text{red}^* \] \hspace{1cm} (1)

\[\text{C}_3\text{H}_6(g) + 9 \text{O}(s) \xrightarrow{k_2} 3 \text{CO}_2(g) + 3 \text{H}_2\text{O}(g) + 9 \text{red}^* \] \hspace{1cm} (2)

\[\text{O}_2(g) + 2 \text{red}^* \xrightarrow{k_3} 2 \text{O}(s) \] \hspace{1cm} (3)

Označme:

\[\beta = \frac{\text{počet aktivních míst v redukované formě}}{\text{celkový počet aktivních míst}} \]

Rychlostní rovnice pro výše uvedené kroky jsou pak:

\[r_1 = k_1 p_{\text{C}_3\text{H}_8}(1 - \beta) \]

\[r_2 = k_2 p_{\text{C}_3\text{H}_6}(1 - \beta) \]

\[r_3 = k_3 p_{\text{O}_2} \beta \]

1-C

Za předpokladu, že počet atomů kyslíku na povrchu katalyzátoru zůstává konstantní, vyjádřete \(\beta \) jako funkci \(k_1, k_2, k_3, p_{\text{C}_3\text{H}_8}, p_{\text{C}_3\text{H}_6}, p_{\text{O}_2} \).

Výpočet:
<table>
<thead>
<tr>
<th>Úloha 2</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celkem</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 % z celkového hodnocení

Úloha 2: Kinetický izotopový efekt (KIE) a vibrační energie nulového bodu (ZPE)

Výpočet ZPE a KIE

Kinetický izotopový efekt (KIE) vysvětluje rozdílné rychlostní konstanty reakce pro dva reaktanty, které se liší pouze tím, že obsahují dva různé izotopy téhož prvku. KIE se dá využít např. při zjišťování toho, která vazba v průběhu reakce zaniká. V této úloze využijete model harmonického oscilátoru k předpovědi rozdílů rychlosti aktivace vazeb C–H a C–D (D = 2H).

Vibrační frekvence (ν) harmonického oscilátoru je dána jako:

$$\nu = \frac{1}{2\pi\sqrt{\mu}} k,$$

kde k je silová konstanta a μ je redukovaná hmotnost. Vibrační energie molekuly je dána výrazem:

$$E_n = \left(n + \frac{1}{2}\right)\hbar \nu,$$

kde n je vibrační kvantové číslo (jehož dvojené hodnoty jsou 0, 1, 2, ...). Energie nejnižší vibrační hladiny (E_n při $n = 0$) se nazývá **vibrační energie nulového bodu (ZPE)**.

2-A1

Vypočítejte redukovanou hmotnost C–H (μ_{CH}) a C–D (μ_{CD}) v atomových hmotnostních jednotkách. Uvažujte hmotnost atomu deutéria rovnou dvojnásobku hmotnosti atomu lehkého vodíku.

Výpočet:

Teoretická část (oficiální česká verze), 49. IChO 2017, Thajsko
[Pokud jste nezodpověděli 2-A1, použijte dále hodnoty $\mu_{CH} = 1,008$ amu a $\mu_{CD} = 2,016$ amu. Tyto hodnoty nemusí být blízké hodnotám reálným.]

2-A2

Silová konstanta k pro vibraci C–H je stejná jako silová konstanta pro vibraci C–D. Vlnočet vibrace vazby C–H je 2 900 cm-1. Určete vlnočet vazby C–D (v jednotkách cm-1).

\textit{Výpočet:}
2-A3
V souladu s vibračními frekvencemi vazeb C–H a C–D z otázky 2-A2 vypočítejte vibrační energie nulových bodů (ZPE) vazeb C–H a C–D v jednotkách kJ mol⁻¹.

\[\text{Výpočet:} \]

[Pokud jste nezodpověděli 2-A3, použijte dále hodnoty } ZPE_{CH} = 7,23 \text{ kJ mol}⁻¹ \text{ a } ZPE_{CD} = 2,15 \text{ kJ mol}⁻¹. \text{ Tyto hodnoty nemusí být blízké hodnotám reálným.}]

Kinetický izotopový efekt (KIE)
Vzhledem k rozdílné vibrační energii nulového bodu vykazují látky s lehkým vodíkem a jejich deuterovaná analoga různé reakční rychlosti.

Pro disociační energie vazeb C–H a C–D platí, že energie obou tranzitních stavů a obou produktů disociace jsou stejné. Poté je KIE dán rozdílem v ZPE vazeb C–H a C–D.

2-A4
Vypočítejte rozdíl disociačních energií vazeb (BDE) C–D a C–H (BDE_{CD} – BDE_{CH}) v kJ mol⁻¹.

\[\text{Výpočet:} \]
2-A5

Uvažujme, že aktivační energie \((E_a)\) pro štěpení vazeb C–H/C–D je přibližně rovna disociační energii vazby, a že Arrheniův faktor je stejný pro štěpení obou vazeb. Jaký je relativní poměr rychlostních konstant štěpení vazeb C–H a C–D \((k_{CH}/k_{CD})\) při 25 °C?

Výpočet:

2-A6

Využití KIE ke studiu reakčního mechanismu

Byla studována oxidace deuterovaného a nedeuterovaného difenylmethanolu v přítomnosti nadbytku kyseliny chromové.

\[
\begin{align*}
\text{nadbytek } \text{Na}_2\text{Cr}_2\text{O}_7 & \quad \text{H}_2\text{SO}_4 \\
\text{aceton-voda, } 20 ^\circ \text{C} & \quad \rightarrow
\end{align*}
\]

Označme \(C_0\) původní koncentraci buď deuterovaného nebo nedeuterovaného difenylmethanolu a \(C_t\) jeho koncentraci v čase \(t\). Experimentálně byly zjištěny dvě závislosti (Obrázek 2a a 2b), ze kterých lze získat údaje o rychlostních konstantách.
Který z uvedených grafů popisuje oxidaci deuterovaného a který nedeuterovaného difenylmethanolu? Zaškrtněte v jedno z koleček pro každou otázku.

| Oxidace nedeuterovaného difenylmethanolu: | Obrázek 2a | Obrázek 2b |
| Oxidace deuterovaného difenylmethanolu: | Obrázek 2a | Obrázek 2b |

2-A7
Na základě grafů v otázce 2-A6 vypočítejte \(k_{\text{CH}} \) a \(k_{\text{CD}} \) (v jednotkách \(\text{min}^{-1} \)).
2-A8

Byl navržen následující mechanismus reakce:

1. \(\text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O} + 2\text{H}^+ \rightleftharpoons 2\text{H}_2\text{CrO}_4 \)

2. \(\text{Ph}-\text{C}-\text{OH} + \text{HO-} \text{Cr-OH} \rightarrow \text{Ph}-\text{C}-\text{O-} \text{Cr-OH} + \text{H}_2\text{O} \)

3. \(\text{Ph-} \text{C}-\text{O-} \text{Cr-OH} + \text{H}_2\text{O} \rightarrow \text{Ph} = \text{C}=\text{O} + \text{H}_3\text{O}^+ + \text{HCrO}_4^- \)

Na základě informací z otázek 2-A6 a 2-A7 určete, který krok je rychlost určující krok celé reakce. Zaškrtněte v jednom z koleček.

- [] Krok (1)
- [] Krok (2)
- [] Krok (3)
Úloha 3: Termodynamika chemických reakcí

Část A

Methanol se průmyslově vyrábí ze směsi oxidu uhelnatého a vodíku na katalyzátoru ZnO/CuO:

\[
\text{CO(g)} + 2\text{H}_2(g) \rightarrow \text{CH}_3\text{OH(g)}
\]

Standardní slučovací molární enthalpice a standardní molární entropie pro všechny tři plyny jsou při standardní teplotě (298 K) a tlaku (1 bar) v následující tabulce.

<table>
<thead>
<tr>
<th>Plyn</th>
<th>(\Delta H^\circ) (kJ mol(^{-1}))</th>
<th>(S^\circ) (J K(^{-1}) mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(g)</td>
<td>-111</td>
<td>198</td>
</tr>
<tr>
<td>H(_2)(g)</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>CH(_3)OH(g)</td>
<td>-201</td>
<td>240</td>
</tr>
</tbody>
</table>

3-A1

Vypočítejte \(\Delta H^\circ\), \(\Delta S^\circ\), \(\Delta G^\circ\) a \(K_P\) pro tuto reakci při 298 K.

\[
\Delta H^\circ = \underline{\underline{\ldots}}
\]

\[
\Delta S^\circ = \underline{\underline{\ldots}}
\]
\[\Delta G^\circ = \quad \]

\[K_p = \quad \]

[Pokud jste nevypočítali 3A-1, použijte dále \(K_p = 9 \cdot 10^5 \).]

3-A2
Komerční reaktor pracuje při teplotě 600 K. Vypočítejte hodnotu \(K_p \) při této teplotě za předpokladu, že \(\Delta H^\circ \) a \(\Delta S^\circ \) jsou nezávislé na teplotě.

\(Výpočet: \)
$K_p =$

[Pokud jste nevypočitali 3A-2, použijte dále pro 600 K $K_p = 1 \cdot 10^{-2}$.]

3-A3
Průmyslová výroba methanolu probíhá v reaktoru, do kterého proudí 2 moly H₂ na každý 1 mol CO. Molární zlomek methanolu v odecházející směsi je 0,18. Za předpokladu, že v reaktoru se ustavila rovnováha, vypočítejte, jaký je celkový tlak v reaktoru při teplotě 600 K.

$Výpočet:$

Celkový tlak $p =$

bar
Část B

3-B

Uvažujme následující uzavřený systém, který se skládá ze dvou nádob oddělených uzavřeným ventilem, který má zanedbatelný objem. V obou nádobách je stejný tlak p, nádoba A obsahuje 0,100 mol argonu a nádoba B 0,200 mol dusíku. Objemy těchto nádob jsou V_A a V_B. Plynů se za uvedených podmínek chovají ideálně.

Pomalu otevřeme ventil a necháme systém dojít do rovnováhy. Uvedené plyny tvoří ideální směs. Vypočítejte změnu Gibbsovy energie ΔG tohoto děje při 300 K.

\[Výpočet: \]

\[\Delta G = \quad \text{J} \]
Úloha 4: Elektrochemie

Část A: Galvanický článek

Experiment je prováděn při 30,00 °C. Elektrochemický článek se skládá z vodíkového poločlánku [Pt(s) | H₂(g) | H⁺(aq)] tvořeného vodíkovou elektrodu sycenou plynnným vodíkem a pufrovaným roztokem. Druhý poločlánek je tvořen kovovým (M) plíškem ponořeným do roztoku obsahujícího M²⁺(aq) ionty o neznámé koncentraci. Tyto dva poločlánky jsou spojeny solným můstkem, viz obrázek 1.

Poznámka: Standardní redukční potenciály jsou uvedeny v Tabulce 1 (na následující straně).
Tabulka 1. Standardní redukční potenciály (pro 298 K)

<table>
<thead>
<tr>
<th>Poloreakce</th>
<th>E° (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ba}^{2+}(aq) + 2e^- \rightarrow \text{Ba(s)}$</td>
<td>$-2,912$</td>
</tr>
<tr>
<td>$\text{Sr}^{2+}(aq) + 2e^- \rightarrow \text{Sr(s)}$</td>
<td>$-2,899$</td>
</tr>
<tr>
<td>$\text{Ca}^{2+}(aq) + 2e^- \rightarrow \text{Ca(s)}$</td>
<td>$-2,868$</td>
</tr>
<tr>
<td>$\text{Er}^{2+}(aq) + 2e^- \rightarrow \text{Er(s)}$</td>
<td>$-2,000$</td>
</tr>
<tr>
<td>$\text{Ti}^{2+}(aq) + 2e^- \rightarrow \text{Ti(s)}$</td>
<td>$-1,630$</td>
</tr>
<tr>
<td>$\text{Mn}^{2+}(aq) + 2e^- \rightarrow \text{Mn(s)}$</td>
<td>$-1,185$</td>
</tr>
<tr>
<td>$\text{V}^3+(aq) + 2e^- \rightarrow \text{V(s)}$</td>
<td>$-1,175$</td>
</tr>
<tr>
<td>$\text{Cr}^{2+}(aq) + 2e^- \rightarrow \text{Cr(s)}$</td>
<td>$-0,913$</td>
</tr>
<tr>
<td>$\text{Fe}^{2+}(aq) + 2e^- \rightarrow \text{Fe(s)}$</td>
<td>$-0,447$</td>
</tr>
<tr>
<td>$\text{Cd}^{2+}(aq) + 2e^- \rightarrow \text{Cd(s)}$</td>
<td>$-0,403$</td>
</tr>
<tr>
<td>$\text{Co}^{2+}(aq) + 2e^- \rightarrow \text{Co(s)}$</td>
<td>$-0,280$</td>
</tr>
<tr>
<td>$\text{Ni}^{2+}(aq) + 2e^- \rightarrow \text{Ni(s)}$</td>
<td>$-0,257$</td>
</tr>
<tr>
<td>$\text{Sn}^{2+}(aq) + 2e^- \rightarrow \text{Sn(s)}$</td>
<td>$-0,138$</td>
</tr>
<tr>
<td>$\text{Pb}^{2+}(aq) + 2e^- \rightarrow \text{Pb(s)}$</td>
<td>$-0,126$</td>
</tr>
<tr>
<td>$2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g)$</td>
<td>$0,000$</td>
</tr>
<tr>
<td>$\text{Sn}^{4+}(aq) + 2e^- \rightarrow \text{Sn}^{2+}(aq)$</td>
<td>$+0,151$</td>
</tr>
<tr>
<td>$\text{Cu}^{2+}(aq) + e^- \rightarrow \text{Cu}^+(aq)$</td>
<td>$+0,153$</td>
</tr>
<tr>
<td>$\text{Ge}^{2+}(aq) + 2e^- \rightarrow \text{Ge(s)}$</td>
<td>$+0,240$</td>
</tr>
<tr>
<td>$\text{VO}^{2+}(aq) + 2\text{H}^+(aq) + e^- \rightarrow \text{V}^{3+}(aq) + \text{H}_2\text{O(l)}$</td>
<td>$+0,337$</td>
</tr>
<tr>
<td>$\text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu(s)}$</td>
<td>$+0,340$</td>
</tr>
<tr>
<td>$\text{Tc}^{2+}(aq) + 2e^- \rightarrow \text{Tc(s)}$</td>
<td>$+0,400$</td>
</tr>
<tr>
<td>$\text{Ru}^{2+}(aq) + 2e^- \rightarrow \text{Ru(s)}$</td>
<td>$+0,455$</td>
</tr>
<tr>
<td>$\text{I}_2(s) + 2e^- \rightarrow 2\text{I}^-(aq)$</td>
<td>$+0,535$</td>
</tr>
<tr>
<td>$\text{UO}_2^{2+}(aq) + 4\text{H}^+(aq) + 2e^- \rightarrow \text{U}^{4+}(aq) + 2\text{H}_2\text{O(l)}$</td>
<td>$+0,612$</td>
</tr>
<tr>
<td>$\text{PtCl}_2^{2-}(aq) + 2e^- \rightarrow \text{Pt(s)} + 4\text{Cl}^-(aq)$</td>
<td>$+0,755$</td>
</tr>
<tr>
<td>$\text{Fe}^{3+}(aq) + e^- \rightarrow \text{Fe}^{2+}(aq)$</td>
<td>$+0,770$</td>
</tr>
<tr>
<td>$\text{Hg}^{2+}(aq) + 2e^- \rightarrow 2\text{Hg(l)}$</td>
<td>$+0,797$</td>
</tr>
<tr>
<td>$\text{Hg}^{2+}(aq) + 2e^- \rightarrow \text{Hg(l)}$</td>
<td>$+0,851$</td>
</tr>
<tr>
<td>$2\text{Hg}^{2+}(aq) + 2e^- \rightarrow \text{Hg}_2^{2+}(aq)$</td>
<td>$+0,920$</td>
</tr>
<tr>
<td>$\text{Pt}^3+(aq) + 2e^- \rightarrow \text{Pt(s)}$</td>
<td>$+1,180$</td>
</tr>
<tr>
<td>$\text{MnO}_2(s) + 4\text{H}^+(aq) + 2e^- \rightarrow \text{Mn}^{2+}(aq) + 2\text{H}_2\text{O(l)}$</td>
<td>$+1,224$</td>
</tr>
<tr>
<td>$\text{Cr}_2\text{O}_7^{2-}(aq) + 14\text{H}^+(aq) + 6e^- \rightarrow 2\text{Cr}^{3+}(aq) + 7\text{H}_2\text{O(l)}$</td>
<td>$+1,360$</td>
</tr>
<tr>
<td>$\text{Co}^{3+}(aq) + e^- \rightarrow \text{Co}^{2+}(aq)$</td>
<td>$+1,920$</td>
</tr>
<tr>
<td>$\text{S}_2\text{O}_8^{2-}(aq) + 2e^- \rightarrow 2\text{SO}_4^{2-}(aq)$</td>
<td>$+2,010$</td>
</tr>
</tbody>
</table>
4-A1
Pokud je reakční kvocient \(Q \), definice viz níže, celé článkové reakce roven \(2,18 \cdot 10^{-4} \) při \(30,00 \text{ °C} \), napětí článku je \(+0,450 \text{ V} \). Vypočítejte hodnotu standardního redukčního potenciálu \((E^0) \) a identifikuje kov M. Poznámka: \(\Delta G = \Delta G^0 + RT \ln Q \).

Výpočet:

Standardní redukční potenciál M je _______ \text{ V}. (Výsledek uveďte na 3 desetinná místa.)

Napište značku prvku M tvořícího kovový plíšek: _______________

4-A2
Napište vyčíslenou rovnici redoxní reakce spontánně probíhající v galvanickém článku.

Teoretická část (oficiální česká verze), 49. IChO 2017, Thajsko 22
4-A3

Neznámá koncentrace $\text{M}^2^+(aq)$ iontů v roztoku (Obrázek 1) může být stanovena jodometrickou titrací. Do titrační baňky bylo odpipetováno 25,00 cm3 roztoku obsahujícího ionty $\text{M}^2^+(aq)$ a následně přidán nadbytek KI. Spotřeba roztoku thiosranu sodného o koncentraci 0,800 mol dm$^{-3}$ v bodě ekvivalence byla 25,05 cm3. Napište rovnice všech redoxních reakcí spojených s touto titrací a vypočítejte koncentraci iontů $\text{M}^2^+(aq)$ v roztoku.

Konzentrace iontů $\text{M}^2^+(aq)$ v roztoku je ________________ mol dm$^{-3}$.
(Výsledek uveďte na 3 desetinná místa.)

[Pokud jste nevypočítali koncentraci iontů M^2^+, použijte pro další výpočty hodnotu 0,950 mol dm$^{-3}$.]

4-A4

Pokud je ve vodíkovém poločlánku (Obrázek 1) platinová elektroda sycená plynným vodíkem pod tlakem 0,360 bar a zároveň je ponořena do pufru obsahujícího 0,050 mol mléčné kyseliny (HC$_3$H$_5$O$_3$) a 0,025 mol mléčnanu sodného (NaC$_3$H$_5$O$_3$), napětí galvanického článku je +0,534 V při 30,00 °C. Vypočítejte pH pufru a disociační konstantu (K_a) kyseliny mléčné.

Výpočet
Vypočítané pH pufru je ______________________. (Výsledek uveďte na 2 desetinná místa.)

[Pokud jste nevypočitali pH pufru, použijte hodnotu 3,46 pro další výpočet.]

Výpočet:

Disociační konstanta kyseliny mléčné je ____________________________.
Kód studenta/ky: CZE-copy

<table>
<thead>
<tr>
<th>Úloha 5</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>C1</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 % z celkového hodnocení

Úloha 5: Fosforečnany a křemičitany v půdě

Výskyt fosforu v půdě je analyzován postupnou extrakcí, která se provádí použitím kyselých nebo alkalických činidel pro oddělení různých forem fosforu. Vzorek půdy byl extrahován a analyzován postupem uvedeným níže.

Část A: Stanovení celkových fosforečnanů (PO₄³⁻) a křemičitanů (SiO₄⁴⁻)

Z 5,00 g vzorku půdy bylo připraveno 50,0 cm³ homogenního roztoku, ve kterém byly stanoveny koncentrace fosforu (5,16 mg dm⁻³) a křemičku (5,35 mg dm⁻³).

5-A1

Vypočítejte, kolik mg PO₄³⁻ je v 1,00 g půdy.

Výpočet:

1 g půdy obsahuje ______________ mg PO₄³⁻. (Výsledek uveďte na 3 desetinná místa.)

5-A2

Vypočítejte, kolik mg SiO₄⁴⁻ je v 1,00 g půdy.

Výpočet:

1 g půdy obsahuje ______________ mg SiO₄⁴⁻. (Výsledek uveďte na 3 desetinná místa.)
Část B: Stanovení dostupného PO₄³⁻ v kyselém extraktu

Stanovení fosforečnanu v kyselém extraktu lze provést metodou využívající molybdenovou modř, kdy z 1 mol fosforečnanu vzniká 1 mol molybdenové modři. Absorbance (A) a transmitance (T) jsou měřeny při 800 nm. Molární absorpční koeficient molybdenové modři je 6 720 dm³ mol⁻¹ cm⁻¹ a všechna měření jsou provedena v 1,00cm kytetě.

Transmitance a absorbance jsou definovány níže:

\[T = \frac{I}{I_0} \]

\[A = \log \left(\frac{I_0}{I} \right) \]

kde \(I \) je intenzita prošlého záření a \(I_0 \) je intenzita vstupujícího záření.

5-B1

Pro analýzu vzorku obsahujícího vysokou koncentraci fosforečnanu je použit referenční roztok obsahující 7,5·10⁻⁵ mol dm⁻³ molybdenové modři, který je použit pro nastavení nulové absorbance. Po tomto nastavení byl analyzován roztok obsahující neznámé množství fosforečnanu převedeného na molybdenovou modř. Transmitance tohoto roztoku byla 0,55. Vypočtěte koncentraci fosforečnanu (mol dm⁻³) ve vzorku.

Výpočet:
Konzentrace fosforečnanu v neznámém vzorku je ________________ mol dm⁻³.

Část C: Stanovení PO₄³⁻ a SiO₄⁴⁻ v bazickém extractu

V alkalickém roztoku reagují s molybdenanem fosforečnanové i křemičitanové ioni ty za vzniku žlutého molybdátosforečnanu a žlutého molybdátkřemičitanu. Po přidání kyseliny askorbové dochází k redukci molybdanů za vzniku molybdové modří mající absorpční maximum při 800 nm. Po přidavku kyseliny vinné lze stanovit pouze fosforečnany.

Kalibrační křivky pro roztoky fosforečnanu s a bez přídavku kyseliny vinné a pro roztoky křemičitanu bez kyseliny vinné, zpracované podle postupu uvedeném výše, uvádí tabulka:

<table>
<thead>
<tr>
<th>Podmínky</th>
<th>Lineární rovnice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosforečnan s a bez přídavku kyseliny vinné</td>
<td>(y = 6720 \cdot x₁)</td>
</tr>
<tr>
<td>Křemičitan bez přídavku kyseliny vinné</td>
<td>(y = 868 \cdot x₂)</td>
</tr>
</tbody>
</table>

\(y \) je absorbance při 800 nm,
\(x₁ \) je koncentrace fosforečnanu v mol dm⁻³,
\(x₂ \) je koncentrace křemičitanu v mol dm⁻³

Absorbance při 800 nm alkalické frakce roztoku vzorku půdy zpracované postupem uvedeným výše je 0,267 v přítomnosti kyseliny vinné a 0,510 bez přídavku kyseliny vinné.

5-C1

Vypočítejte koncentraci fosforečnanu v alkalické frakci vzorku půdy v mol dm⁻³ a z ní vypočítejte hmotnostní koncentraci fosforu v mg dm⁻³.

Výpočet:

Konzentrace PO₄³⁻ = ________________ mol dm⁻³ (Výsledek uveďte na 2 desetinná místa.)

Hmotnostní koncentrace P = ________________ mg dm⁻³ (Výsledek uveďte na 2 desetinná místa.)
5-C2
Vypočítejte koncentraci křemičitanu ve vzorku půdy v alkaličtém roztoku v mol dm$^{-3}$ a z ní vypočítejte hmotnostní koncentraci křemičíku v mg dm$^{-3}$.

Výpočet:

Konzentrace SiO$_4^{4-}$ = ____________ mol dm$^{-3}$ (Výsledek uveďte na 2 desetinná místa.)

Hmotnostní koncentrace Si = __________ mg dm$^{-3}$ (Výsledek uveďte na 2 desetinná místa.)

Část D. Prekoncentrace molybdátosfosforečnanu amonného

100 cm3 vodného roztoku molybdátosfosforečnanu amonného ((NH$_4$)$_3$PMo$_{12}$O$_{40}$) je extrahováno 5,0 cm3 organického rozpouštědla. Distribuční koeficient pro organické rozpouštědlo-voda (K_{ow}) je dán poměrem koncentrace sloučeniny v organické fázi (c_o) ke koncentraci sloučeniny ve vodné fázi (c_w). K_{ow} molybdátosfosforečnanu amonného je 5,0. Molární absorpcní koeficient molybdátosfosforečnanu amonného v organické fázi je 5 000 dm3 mol$^{-1}$ cm$^{-1}$.

5-D
Vypočíte te celkové množství fosforu (v mg) v původním vodném roztoku, pokud je absorbance organické fáze 0,200. Optická dráha kyvety je 1,00 cm.

Výpočet:
Celkové množství P v původním vodném roztoku je ________________ mg.
6 % z celkového hodnocení

Úloha 6: Železo

Železo (Fe) je čtvrtým nejrozšířenějším prvkem zemské kůry a používá se více než 5 000 let.

Část A

Železo se snadno oxiduje, což limituje jeho použití. Prvek X tvoří se železem slitiny a používá se pro zvýšení jeho odolnosti vůči oxidaci.

6-A1
Informace o prvku X:
(1) První ionizací se odštěpí elektron s kvantovými čísly \(n_1 = 4 - l_1 \).
(2) Druhou ionizací se odštěpí elektron s kvantovými čísly \(n_2 = 5 - l_2 \).
(3) Prvek X má menší atomovou hmotnost než Fe.

Určete prvek X.

Zapište značku prvku.

6-A2
Fe i prvek X tvoří prostorově centrovancou kubickou mřížku. Atomy Fe, které aproximujeme jako tuhé koule, zaujímají v elementární buňce objem \(1,59 \times 10^{-23} \text{cm}^3 \). Objem elementární buňky prvku X je \(0,0252 \text{nm}^3 \). Úplný substituční tuhý roztok vzniká obvykle tehdy, když \(R = \left(\frac{R_X - R_{Fe}}{R_{Fe}} \right) \times 100 \) je menší nebo rovno 15, kde \(R_X \) a \(R_{Fe} \) jsou atomové poloměry X a Fe.

Mohou X a Fe tvořit úplný substituční tuhý roztok? Doložte výpočtem. **Bez výpočtu dostanete 0 bodů.** Objem koule je \(\frac{4}{3} \pi r^3 \).

Odpověď (Zaškrtněte \(\checkmark \))

\[\square \text{ Ano (}\Delta R \leq 15\text{)} \quad \square \text{ Ne (}\Delta R > 15\text{)} \]

Výpočet:
Část B

V přírodních vodách se železo vyskytuje ve formě Fe(HCO₃)₂, který disociuje na Fe²⁺ a HCO₃⁻. Pro odstranění železa z vody se Fe(HCO₃)₂ oxiduje na nerozpustný Fe(OH)₃, který se odfiltruje.

6-B1

Fe²⁺ se v zásaditém prostředí oxiduje pomocí KMnO₄ za vzniku nerozpustných Fe(OH)₃ a MnO₂. Vyčíslenou iontovou rovnici zapište reakci probíhající v zásaditém prostředí.
V tomto prostředí se HCO₃⁻ přeměňuje na CO₃²⁻. Vyčíslenou iontovou rovnici zapište tuto reakci probíhající v zásaditém prostředí.

6-B2
Molekulová sloučenina A je tvořena více než dvouatomovými molekulami. Je oxidačním činidlem a může být připravena reakcí dvouatomových molekul halogenu (Q₂) a NaQO₂.

\[Q₂ + x \text{NaQO}_2 \rightarrow y \text{A} + z \text{NaQ} \]
\[kde x + y + z \leq 7 \]

V rovnici výše jsou x, y a z koeficienty vyčíslené rovnice. Z binárních sloučenin halogenů s vodíkem má HQ nejnižší bod varu. Určete Q, a pokud má A v molekule jeden nepárový elektron, nakreslete strukturní elektronový vzorec sloučeniny A s nulovými formálními náboji na všech atomech.

Napište značku prvku.

Q = __________

Strukturní elektronový vzorec sloučeniny A:

Jaký tvar má molekula sloučeniny A? (Zaškrtněte ✓)

☐ lineární ☐ lomená ☐ cyklická ☐ tetraedrická ☐ trigonálně planární ☐ jiná

6-B3
Sloučenina D je nestabilní oxidační činidlo, které se dá použít na odstranění Fe(HCO₃)₃ z přírodní vody. Je tvořena prvky G, Z a vodíkem. Oxidační číslo prvku Z je +1. Atom vodíku je vázan na atom prvku s vyšší elektronegativitou. Informace o prvcích G a Z:

1) Za běžných podmínek je prvek G tvořen dvouatomovými molekulami G₂.

2) Atom Z má o jeden proton méně než atom E. Za standardních podmínek je E plyn, Z₅ je těkavá pevná látka.

3) Molekuly sloučeniny EG₃ mají pyramidální tvar.
Určete prvky G a Z a nakreslete strukturní vzorec D.

Napište značky prvky.

\[\text{G} = \quad \text{Z} = \quad \]

Strukturní vzorec D:

Část C

\(^{59}\text{Fe}\) je radiofarmaceutický izotop používaný pro studium metabolismu železa ve slevině. Tento izotop se rozpadá na \(^{59}\text{Co}\) následovně:

\[
\text{^{26}_{26}\text{Fe} \rightarrow ^{27}_{27}\text{Co} + a + b}
\]

(1)

6-C1

Co představují \(a\) a \(b\) v rovnici (1)? (Zaškrtněte ✓)

<table>
<thead>
<tr>
<th>proton</th>
<th>neutron</th>
<th>beta</th>
<th>pozitron</th>
<th>alfa</th>
<th>gama</th>
</tr>
</thead>
</table>

6-C2

Uvažuji rozpad (1), kdy je izotop \(^{59}\text{Fe}\) ponechán 178 dní, což představuje \(n\)-násobek jeho poločasu rozpadu \((t_{1/2})\), a molární poměr \(^{59}\text{Co}\) ku \(^{59}\text{Fe}\) dosáhne 15:1. Pokud je \(n\) celé číslo, jaký je poločas rozpadu \(^{59}\text{Fe}\) ve dnech? Doložte výpočtem.

Výpočet:
Poločas rozpadu $^{59}\text{Fe} =$ ___________ dne (Uveďte s přesností na 1 desetinné místo.)
Kód studenta/ky: CZE-copy

<table>
<thead>
<tr>
<th>Úloha 7</th>
<th>A</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>Celkem</td>
<td>4,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 % z celkového hodnocení

Úloha 7: Skládačka chemické struktury

Titaničité komplexy jsou studovány pro svoji proteínádorovou aktivitu, která je ovlivněna izomerií a jejich velikostí. Úloha se zabývá syntézou a charakterizací některých titaničitých komplexů.

7-A1

Reakcí 2 ekvivalentů 2-terc-butylfenolu, 2 ekvivalentů formaldehydu a \(N,N' \)-dimethylethylén-1,2-diaminu v kyselém prostředí při 75 °C vznikají tři hlavní produkty se stejným molekulovým vzorcem \(\text{C}_{26}\text{H}_{40}\text{N}_{2}\text{O}_{2} \). Nakreslete struktury těchto produktů.

\[
2 \text{HO} \text{Bu} + 2 \text{HCHO} + \text{H}_{3}\text{C}\text{CH} - \text{NH}_2 - \text{NHCH}_3 \xrightarrow{\text{H}^+ 75 \degree\text{C},24 \text{h}} \text{C}_{26}\text{H}_{40}\text{N}_{2}\text{O}_{2} + 2 \text{H}_2\text{O}
\]

Produkt 1:

Produkt 2:

Produkt 3:
7-A2

Pokud se jako substrát použije 2,4-di-terc-butilfenol místo 2-terc-butilfenolu se stejnou stechiometrií jako v 7-A1, vzniká pouze jeden produkt X. Nakreslete strukturu X.

Reakcí X z otázky 7-A2 a Ti(O\text{Pr})_4 [\text{Pr} = \text{isopropyl}] v etharu pod inertní atmosférou vzniká pevný žlutý titaničitý komplex s koordinačním číslem 6 a isopropyalkohol.

\[
\begin{align*}
a X + b \text{Ti(O\text{Pr})}_4 &\xrightarrow{\text{Et}_2\text{O}} d Y + c \text{PrOH} \\
\text{reakce 1}
\end{align*}
\]

Ze sloučení X, Ti(O\text{Pr})_4 a Y vykazuje pouze produkt Y absorpci ve viditelné oblasti při \(\lambda = 370\) nm. S použitím různých objemů benzenových roztoků X a Ti(O\text{Pr})_4 o stejné koncentraci 0,50 mol dm\(^{-3}\) a benzenu jako rozpouštědla byly změřeny následující absorbance při \(\lambda = 370\) nm:

<table>
<thead>
<tr>
<th>Objem roztoku X (cm(^3))</th>
<th>Objem roztoku Ti(O\text{Pr})_4 (cm(^3))</th>
<th>Objem benzenu (cm(^3))</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1,20</td>
<td>1,80</td>
<td>0,05</td>
</tr>
<tr>
<td>0,20</td>
<td>1,00</td>
<td>1,80</td>
<td>0,25</td>
</tr>
<tr>
<td>0,30</td>
<td>0,90</td>
<td>1,80</td>
<td>0,38</td>
</tr>
<tr>
<td>0,50</td>
<td>0,70</td>
<td>1,80</td>
<td>0,59</td>
</tr>
<tr>
<td>0,78</td>
<td>0,42</td>
<td>1,80</td>
<td>0,48</td>
</tr>
<tr>
<td>0,90</td>
<td>0,30</td>
<td>1,80</td>
<td>0,38</td>
</tr>
<tr>
<td>1,10</td>
<td>0,10</td>
<td>1,80</td>
<td>0,17</td>
</tr>
<tr>
<td>1,20</td>
<td>0,00</td>
<td>1,80</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Teoretická část (oficiální česká verze), 49. IChO 2017, Thajsko
7-A3

Vyplňte do tabulky požadované hodnoty:

<table>
<thead>
<tr>
<th>počet molů X</th>
<th>počet molů $X +$ počet molů Ti(O'Pr)$_4$</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,02</td>
</tr>
</tbody>
</table>

(Výsledek uveďte na 2 desetinná místa.)

Nakreslete graf závislosti absorbance na hodnotě $\frac{\text{počet molů } X}{\text{počet molů } X + \text{počet molů Ti(O'Pr)$_4$}}$.

Teoretická část (oficiální česká verze), 49. IChO 2017, Thajsko
Hodnota \(\frac{\text{počet molů } X}{\text{počet molů } X + \text{počet molů } \text{Ti(O}_2\text{Pr)}_4} \), při které vzniká největší množství produktu \(Y \), odpovídá jeho stechiometrii. Na základě grafu rozhodněte, jaký je molární poměr Ti:X v komplexu \(Y \).

Molární poměr Ti:X v komplexu \(Y \) je ________________________.
7-A4

Titaničitý komplex \(Y \) má koordinační číslo 6. IR spektrum \(Y \) nevykazuje široký absorpční pás v oblasti 3200–3600 cm\(^{-1}\). \(Y \) tvoří 3 diastereomery. Zanedbejte stereochemii na atomech N a nakreslete struktury těchto tří diastereomerů.

Nekreslete úplný vzorec ligandu. Uveďte pouze donorové atomy, které se vážou na Ti, a kostru ligandu, zjednodušte následovně:

Např.: \(\begin{align*}
\text{(2,2'-bipyridine)}
\end{align*} \)

se zjednoduší na: \(\begin{align*}
N & \quad N
\end{align*} \)

Poznámka: Pokud jste nevyřešili strukturu \(X \) z otázky 7-A2, použijte tento zástupný symbol ligandu \(X \) (A a Z jsou donorové atomy):

\(\begin{align*}
A & \quad Z & \quad Z & \quad A
\end{align*} \)

\(\text{Diastereomer 1:} \)

\(\text{Diastereomer 2:} \)

\(\text{Diastereomer 3:} \)
7-A5

Za určitých podmínek poskytuje reakce 1 pouze jeden diastereomer Y. Za předpokladu, že struktura Y je stereochemicky rigidní, obsahuje ^1H NMR spektrum Y v CDCl$_3$ čtyři singlety při δ 1,25, 1,30, 1,66 a 1,70 odpovídající tert-butylovým skupinám. Nakreslete strukturu jediného možného diastereomeru Y.

(Nakreslete úplný vzorec ligandu. Uveďte pouze koordinované donorové atomy a kostru ligandu zjednodušte jako v 7-A4.)

<table>
<thead>
<tr>
<th>Úloha 8</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celkem</td>
<td>6</td>
<td>5,5</td>
<td>3</td>
<td>4</td>
<td>1,5</td>
<td>20</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 % z celkového hodnocení

Úloha 8: Povrch sílky

Silika (silikagel) existuje v různých amorfních a krystalických formách. Silika se připravuje procesem sol-gel z alkoxidů, jako jsou tetramethoxysilan (TMOS) a tetraethoxysilan (TEOS), následovně:

a. Hydrolýza:

\[
\begin{align*}
\text{OR} & + 4 \text{H}_2\text{O} \rightarrow \text{OH} \quad \text{OH} \\
\text{RO} & \quad \text{Si} \quad \text{OR} \quad \text{RO} \\
R & = \text{CH}_3 \text{ nebo C}_2\text{H}_5
\end{align*}
\]

b. Kondenzace s uvolněním vody:

\[
\begin{align*}
\text{OH} & \rightarrow \text{OH} \quad \text{OH} \\
\text{HO} & \quad \text{Si} \quad \text{OH} \quad \text{OH} \\
\text{HO} & \quad \text{HO} \quad \text{HO}
\end{align*}
\]

c. Kondenzace s uvolněním alkoholu:

\[
\begin{align*}
\text{OH} & \rightarrow \text{OH} \quad \text{OH} \\
\text{HO} & \quad \text{Si} \quad \text{OH} \quad \text{OR} \\
\text{HO} & \quad \text{HO} \quad \text{HO}
\end{align*}
\]

= Silika
Všechny atomy v silice jsou vázány tetraedricky ke čtyřem atomům kyslíku, a tvoří tak pevnou 3D síť. Okolí atomu křemíku uvnitř siliky vypadá takto:

![Silykova vazba](image)

8-A1

Na povrchu siliky se běžně vyskytují tři různá okolí atomu křemíku (podobná příkladu výše). Tyto tři struktury nakreslete do rámečků:

![Struktury siliky](image)

Silika účinně adsorbuje ionty kovů z vodných roztoků. Navržené struktury komplexů kov-silika:

![Struktury komplexů](image)

8-A2

Po adsorpci Cu^{2+} se barva siliky mění z bílé na světle modrou. Spektrum ve viditelné oblasti vykazuje široký absorbční pás (s raménkem) při $\lambda_{max} = 550$ nm. Když se na siliku váže Cu^{2+}, vytváří strukturu typu II. Nakreslete obsazený diagram štěpení d-orbitalů iontu Cu^{2+} včetně označení d-orbitalů v komplexu a uveďte elektronové přechody odpovídající absorpci/im ve viditelném spektru.

Diagram štěpení:

![Diagram štěpení](image)
8-A3

Předpokládejte, že ionty kovů první přechodné řady tvoří se silikou analogické komplexy jako Cu$^{2+}$. Který ion kovu má / které ionty kovů mají elektronové přechody analogické jako Cu$^{2+}$? Ion kovu / ionty kovů musí být v oxidačním stavu +II nebo +III. Silanolové skupiny (Si-OH) a voda jsou ligandy tvořící slabé pole.

Silika váže různé ionty kovů neselektivně. Pro zvýšení selektivity se povrch siliky modifikuje různými organickými molekulami, jako jsou 3-aminopropyl(trimethoxy)silan a 3-merkaptopropyl(trimethoxy)silan.

8-A4

Pokud se ionty Hg$^{2+}$ vážou pouze na atomy síry siliky-SH, vzniká symetrický komplex [Hg(silika-SH)₂]$^{2+}$. Nakreslete strukturu [Hg(silika-SH)₂]$^{2+}$ včetně orientace os a nakreslete obsazený diagram štěpení d-orbitalů. (Použijte R-SH místo celé struktury siliky-SH.)
8-A5
Rozhodněte o pravdivosti tvrzení:

a) Komplexy \([(\text{Hg(silika-SH)}_2)_2]^{2+}\) vykazují d-d přechody.

☐ Ano ☐ Ne

b) Komplexy \([(\text{Cu(silika-NH}_2)_2]^{2+}\) mají podobnou barvu jako aminové měďnaté komplexy se stejnou geometrií.

☐ Ano ☐ Ne

c) \(\lambda_{\text{max}}\) absorpce ve viditelné oblasti je pro \([(\text{Cu(silika-NH}_2)_2]^{2+}\) větší než pro \([(\text{Cu(silika-OH)}_2]^{2+}\).

☐ Ano ☐ Ne
Úloha 9

<table>
<thead>
<tr>
<th>Úloha 9</th>
<th>A</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>Celkem</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 % z celkového hodnocení

Úloha 9: Do ... neznáma

9-A1

Organická látka A je chirální, skládá se pouze ze tří prvků a má molekulovou hmotnost (Mₐ) 149 (zaokrouhleno na celé číslo).

V 1H NMR spektru látky A najdete kromě dalších signálů 3 signály aromatických protonů. V 13C NMR spektru je 8 signálů, z nichž 4 jsou v oblasti 120–140 ppm.

Látka A může být připravena reakcí karbonylové sloučeniny s methylaminem a následnou reakcí s NaBH₄CN. Napište všechny možné strukturní vzorce látky A. Neuvažujte stereochemii a stereoisomery.
9-A2

Jeden z konstitučních izomerů látky A (struktura A1, A2 nebo A3) může být připraven z látky B nebo z látek C a D, jak je ukázáno na následujícím schématu. Napište strukturní vzorce látek B–F a odpovídající konstituční izomer látky A.

Kód studenta/ky: CZE-copy
9-A3

První syntéza:

![Diagram první syntézy]

Druhá syntéza:

![Diagram druhé syntézy]
Kód studenta/ky: CZE-copy

<table>
<thead>
<tr>
<th>Úloha 10</th>
<th>A</th>
<th>B</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>Celkem</td>
<td>20,5</td>
<td>4</td>
<td>5,5</td>
</tr>
<tr>
<td>Hodnocení</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 % z celkového hodnocení

Úloha 10: Totální syntéza alkaloidů

Alkaloidy jsou přírodní látky obsahující dusík. Často se jedná o strukturně složité látky s významnou biologickou aktivitou. V této úloze se budete zabývat: sauristolaktamem a pankratistatinem.

Část A

Sauristolaktam se vyznačuje výraznou cytotoxicitou vůči řadě nádorových buněčných linii. Může být připraven podle následujícího schématu. (1H NMR spektra byla měřena v CDCl₃ při 300 MHz.)

10-A1

Nakreslete struktury látek A–G z níže uvedeného schématu. Odpovědi zapisujte do tabulky, kterou najdete na straně následující za schématem.
Kód studenta/ky: CZE-copy

2-methoxy-4-methyl fenol

1. PhCH₂Br, K₂CO₃
2. POCl₃, DMF

A

NaClO₂
Na₂H₂PO₃

B

C₁₀H₈O₂

Produkt obsahuje dvě aromatická jádra: jedno monosubstituované a jedno tetralsubstituované se dvěma singlety v ¹H NMR spektru

V IR spektru
absorpční pásmo vysoké intenzi v oblasti 1725-1700 cm⁻¹
a široký pás v oblasti 3300-2500 cm⁻¹

kat. H₂SO₄
MeOH
reflux

E

Br₂

D

1. H₂, Pd/C
2. Aq₂O

pyridin

C

Kompletní ¹H NMR spektrum:
7.59 (s, 1H), 3.88 (s, 3H),
3.87 (s, 3H), 2.68 (s, 3H),
2.35 (s, 3H)

Produkt má v ¹H NMR spektru kromě aromatických signálů následující signály v oblasti 0-6 ppm:
3.87 (s, 3H), 3.84 (s, 3H),
2.63 (s, 3H), 2.31 (s, 3H)

V IR spektru
absorpční pás o vysoké intenzi v oblasti 1750-1735 cm⁻¹

F

nadbytek
CH₂NH₂

následné
zpracování
vodou

G

Bi(OH)₂

kat. Pd(PPh₃)₄

C₅₂H₄O₃

sauristolaktam

C₁₀H₈Br₂O₂

Kompletní ¹H NMR spektrum:
7.74 (s, 1H), 5.19 (s, 2H),
3.93 (s, 3H), 3.91 (s, 3H),
2.36 (s, 3H)

C₁₀H₈BrNO₃

Kompletní ¹H NMR spektrum:
7.40 (s, 1H), 4.22 (s, 2H),
3.98 (s, 3H), 3.19 (s, 3H)
a 1H vyměnitelný s D₂O
Struktury látek A–G.
Část B

Pankratistatin, izolovaný z havajské pavoučí lilie, inhibuje růst nádorových buněk in vitro a in vivo a má významnou antivirální aktivitu.

Syntéza pankratistatínu vede přes intermediáty X1 a X2, jejichž příprava je znázorněna na následujícím schématu.

10-B1

Nakreslete struktury látek A a B.
Intermediát X₁ (jeden enantiomer) je označen deuteriem (stereochemie je vyznačena v následujícím schématu). Navrhněte prostorovou židličkovou strukturu látky E a strukturu látky F včetně stereochemie. Je Y proton (¹H) nebo deuterium (²H)?

Kód studenta/ky: CZE-copy
2 % z celkového hodnocení

Úloha 11: Zkroucení a chiralita

*Trans-*cyklookten je planárně chránní s vysokou racemizační bariérou. Dvojná vazba v *trans-*cyklooktenu je zkroucená, a v důsledku toho molekula vykazuje neobvyklou reaktivitu v cykloadičních reakcích.

Lišák Fox a jeho spolupracovníci vyvinuli v roce 2011 fotochemickou syntézu řady derivátů *trans-*cyklooktenu. Tato syntéza není stereospecifická. Syntetické schéma je znázorněno na následujícím schématu.
11-A1

11-A2

Jestliže pro přeměnu látky 3 na látku 4 použijete jeden čistý enantiomer látky 3, kolik stereoisomerů látky 4 dostanete?

Počet možných stereoisomerů látky 4 =

Pokud vznikne více než jeden stereoisomer, je možné získané stereoisomery látky 4 rozdělit pomocí nechirální chromatografie?

☐ Ano ☐ Ne